CAPTIVE CLUTCHES

2014 TCRA SEMINAR

Louisville, Kentucky

Presenter: Ed Lee

Technical Specialist

Why is this topic important?

• Previous talks have focused on most relevant issues and/or industry problems

• This year the "captive clutch" topic has been a very hot issue on tech calls.

• The "NUTS and BOLTS" of rebuilding Captive Clutches will be presented today.

- This is the Captive Clutch of the GM 258mm
- These are the 4 leaf springs that connect the piston to the cover.
- The 4 leaf springs do not serve any purpose in the apply or release of the clutch.
- Their only job is to **quietly** keep the piston from rotating.

• This is a close up of one of the springs.

• One end (left) is attached to the cover and the other end (right) is riveted to the piston.

• Attached means...

• Separate the leaf spring from the piston at the piston end.

• This shows where the metal is displaced from the cover to make the stand that looks like the rivet.

• This shows the head of the rivet ground off.

• Use an 11/4 abrasive wheel on an right angle air

grinder.

- The trick is to get the rivet out <u>without</u> bending the piston or damaging the cover.
- Use this tool to remove the rivets.
- You will need to make this tool.

The thickness of the tool is the thickness of the gap between the piston and cover.

- The opening has to be wide enough for the head of the rivet to pass through. The tool supports the piston when you drive the rivet out.
- The step next to the opening supports the rivet head when you are reinstalling the rivet. (thickness of the tool minus the thickness of the rivet head).

sonnax

- You can see the tool in action.
- Outside arc is the shape of the inside of the cover.
- Inside arc is the shape of the O.D. of the piston.
- Bend in the tool
 allows you to hold
 on to it.

• This is the clutch that you are servicing under

the piston.

 Double sided spun woven friction material.

- Look at the important places on this cover:
- 1) The pilot on this type of converter has issues because of how narrow the base is. It is a good idea to run an extra bead of weld around the base

of the pilot.

- Look at the important places on this cover:
- 2) This converter is balanced with the flex plate. The orange dot on the converter matches the orange dot on the flex plate
- You may want to consider marking the spot where the orange dot on your converter.
- NOTICE the indentations: they are the cavities where the metal was displayed for the stands that holds the springs.

• Like the GM 258mm converter, the leaf springs that attach the piston to the cover are retained to the cover by the peened over stands.

• The piston end of the leaf springs are attached to the piston by rivets.

• If you increase the opening on the tool that you used on the GM 258mm
Converter by .025" you can use it on this converter.

- The clutch release clearance on this converter is about .030" to .035".
- One thing you need to be aware of is how the converter is build. Ask yourself, does the turbine hub touch the cover or not?
- If the turbine hub touches the cover, the end play is .005" to .010" and the clutch release clearance is set separately.
- If the turbine hub does not touch the cover, the end play is the clutch release clearance.

CAPTIVE CLUTCHES

- The **GM 6L90 converter** and the four (4) pad version of the **Allison 1000** converter both use a captive clutch similar to the Early 6R80 Ford converter.
- You will need to enlarge the opening on the tool another .010" for the Allison 1000 converter.

These pictures show you TWO different diameter converters. **No parts** will interchange when building these two different diameter converters.

The rivet heads have been removed on the small diameter converter (on right). This is a no-no!

This picture shows the larger cover with the piston removed by drilling out the stands in the cover. This is also **NOT** a good idea.

There is only .100" between the leaf springs at the cover end and the turbine hub. That is not enough room to use a nut and lock washer.

This piston has been removed properly.

By removing the peened over end of the stand, you can remove the piston, reinstall it, and Tig it in place. This is a one shot deal.

Turbine, Turbine Hub and Damper Assembly – this is a unit.

- If you need to replace the Turbine Hub because of worn splines or service the Damper Assembly, you will need to separate this unit.
- This is very hard to impossible to do.

- There is a blind snap ring that holds the two parts of the turbine hub together.
- To do this you need to remove the turbine and machine the turbine hub from the opposite side from this view.
- As you can see, there is no place to hold this piece in a lathe from this side.

• Machined front of turbine hub for holding purposes.

• Machining – Left is After, Right is Before

Turbine

• You need to remove the rivet heads to take the turbine off of the Turbine Hub.

- Turbine Hub
- The rivets you just removed were in the flange of this hub.
- You will need to machine
 off the entire hub down
 to the snap ring groove.

• Turbine Hub Machined Down to the Snap Ring

Groove

- Like many Ford converters, the pilot is a weak spot it is too narrow at its base.
- The issue of balancing the converter with the flex plate started with the 5R55 converters and continues today.

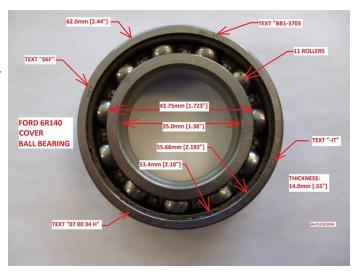
Note the external splines

• Note the internal splines

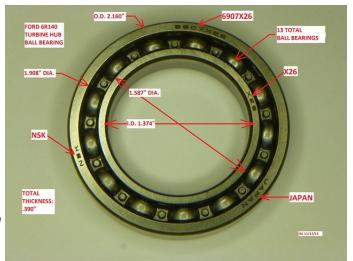
• This pump uses a bearing instead of a bushing.

• Ford recommends a very close tolerance on run

out.



• On this pump cover, the gap between the two parts is where the PTO gear lives.



• 4 and 6 stud bearing – it is an SKF bearing, has 11 balls, and 1.380" I.D. and 2.440" O.D.

8 stud bearing – it is a NSK
bearing, has 13 balls, and
1.374" I.D. and 2.160" O.D.
NOT INTERCHANGABLE

- The bearing is missing, but everything else is complete on this cover.
- Note: the pressure plate is welded in place

• Side view of weld

• It is very important that you use proper parting

procedure.

• Pressure Plate out of the cover

- Steel clutch plates with multi-layer springs
- Springs are located in three (3) positions
- The friction clutch is located between the two

steels

• It is necessary to separate one spring to service the friction.

- Friction clutch
- Clutch release clearance is about .035"
- Installing shims during the pressure plate

welding process will keep the clutch release clearance correct.

- Damper Assembly and the Turbine complete
- This one part of this converter is heavier than some complete converters.

• Damper with top plate missing

• After the springs are removed

• Damper spring plate removed

• Wear Plate – called a turbine hub sleeve

• Turbine

Captive Clutches

Thank you

Questions?

